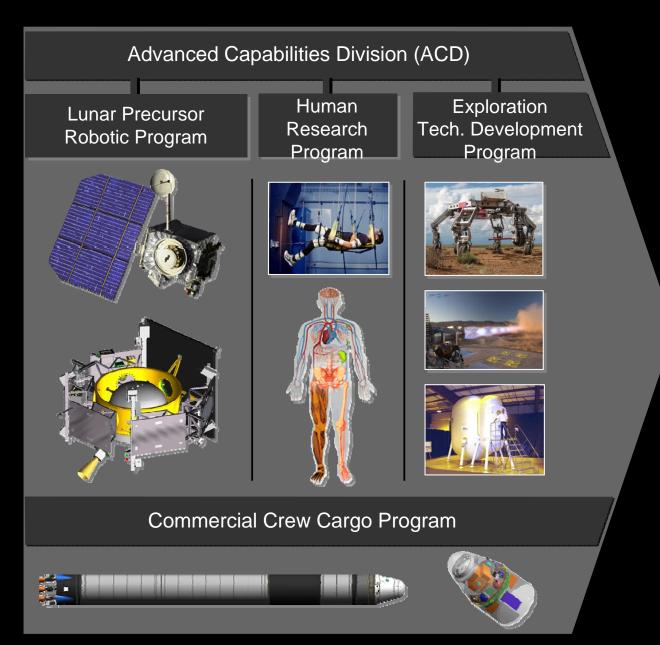
EXPLORATION TECHNOLOGY DEVELOPMENT PROGRAM

NASA

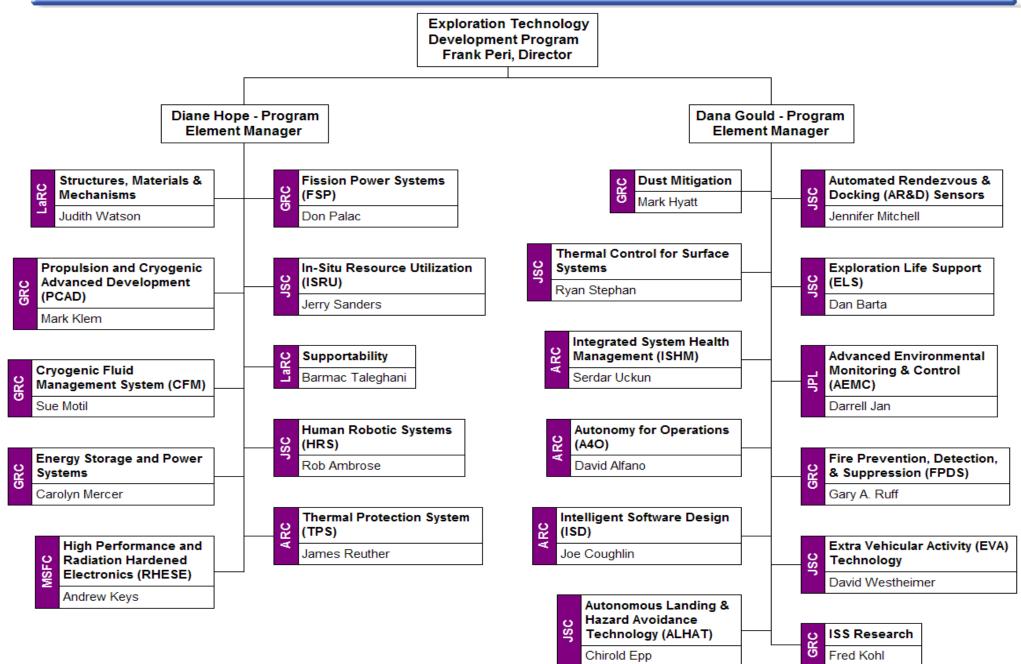


Commercial Development Summit

May 13, 2008

Dr. Chris Moore NASA Headquarters

NASA Programs Enabling Exploration



Exploration Technology Development Program

- Objectives:
 - Reduce human and robotic exploration mission risk by developing advanced technologies and capabilities.
 - Mature critical near-term technologies to support development of the Orion Crew Exploration Vehicle and Ares I launch vehicle
 - Develop long-lead technologies to support a sustainable lunar outpost.
 - Conduct research and test technologies for exploration on the International Space Station.
- ETDP consists of 22 focused projects managed by the NASA Centers.
- NASA Langley is responsible for overall program management.
- ETDP content is aligned with technology priorities identified by ESAS, Constellation Program, and Lunar Architecture Team.

Exploration Technology Development Program

- CxP determines and prioritizes its technology development needs to support annual ESMD budget planning process
 - Goal is to ensure tech investments are traceable to Program or Level I requirements
- Tech Development Needs are collected from Requirements Owners in CxP projects, and then grouped by timeframe and criticality.
- **Timeframes:** Initial Capability (IC), lunar transport, lunar surface, and Mars forward
- **Criticalities:** critical, highly desirable (HD), and desirable

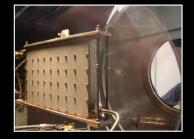
Initial Capability	Lunar Transport	Lunar Surface	Mars
Critical	Critical	Critical	Critical
Highly Desirable	Highly Desirable	Highly Desirable	Highly Desirable
Desirable	Desirable	Desirable	Desirable

- Needs are ranked within each of these groups
- ETDP projects are planned to address critical CxP needs resulting from the TPP.

Lunar Transport - Top Priorities

TPP Rank	Criticality	Title	ROO
1	critical	462: High reliability LOX/LH2 Throttling Engine	Lander
2	critical	463: Cryogenic Fluid Management	Lander
3	critical	524: Large Composite Manufacturing	Ares
4	critical	464: LO2/LCH4 Main Engine & RCS	Lander
5	critical	527: Long-term Cryogenic Storage	Ares
6	critical	538: Composite Primary Structure Technology	Lander
7	critical	387: CEV Parachute Materials	Orion
8	critical	542: Suit Ventilation	EVA
9	critical	526: HTPB Propellant	Ares
10	critical	537: Hazard Detection and Avoidance	Lander
11	critical	124: Phase Change Material	Thermal/ECLSS SIG
12	critical	544: Suit Power	EVA
13	critical	303: Composite Carrier Structure	Orion
14	critical	390: Robust Ablative Heat Shield Architecture	Orion
15	critical	543: PLSS Packaging	EVA
16	critical	525: TVC architecture development to minimize operations (EHA)	Ares
17	critical	601: Airlock /habitat hatches that are dust sealing, long life, common, etc.	LSS
18	critical	541: Radiation Effects Mitigation and Environmental Hardness	Lander
19	critical	302: Alternate Weight Saving Window Materials	Orion
20	critical	545: Suit Oxygen Supply	EVA
21	critical	546: Suit Thermal Control	EVA
22	critical	607: CO2 & Moisture Removal System	Lander
23	critical	531: Liquid Level Measurement	Ares
24	critical	532: Multi-layer Insulation	Ares
25	critical	594: Advancd Airlock/ Suitlock with Dust Filtration	LSS

Technology Development for Orion


Ablative TPS: Qualifying thermal protection system materials in arcjet tests and developing a prototype heat shield.

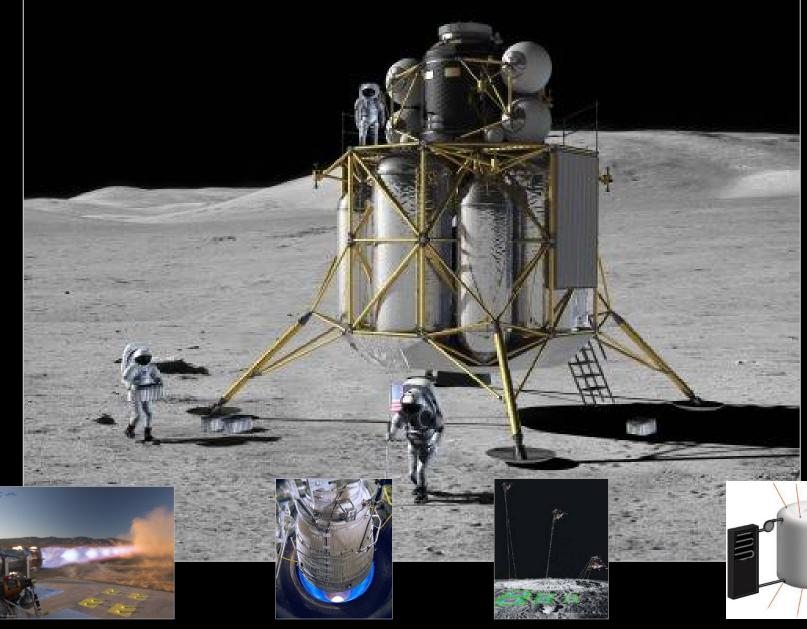
AR&D Sensors: Characterizing optical and laser sensors that measure the range and orientation of a target vehicle during autonomous rendezvous and docking

Structures & Materials: Developing lightweight, high-strength parachute materials.

Thermal Control: Developing prototype flash evaporator, sublimator, and composite radiator for thermal control during different phases of mission.

Exploration Life Support: Developing a prototype carbon dioxide and moisture removal system.

Technology Development for Ares Launch Vehicles



Structures & Materials: Developing friction stir welding and spin forming manufacturing processes for Ares I Upper Stage propellant tanks.

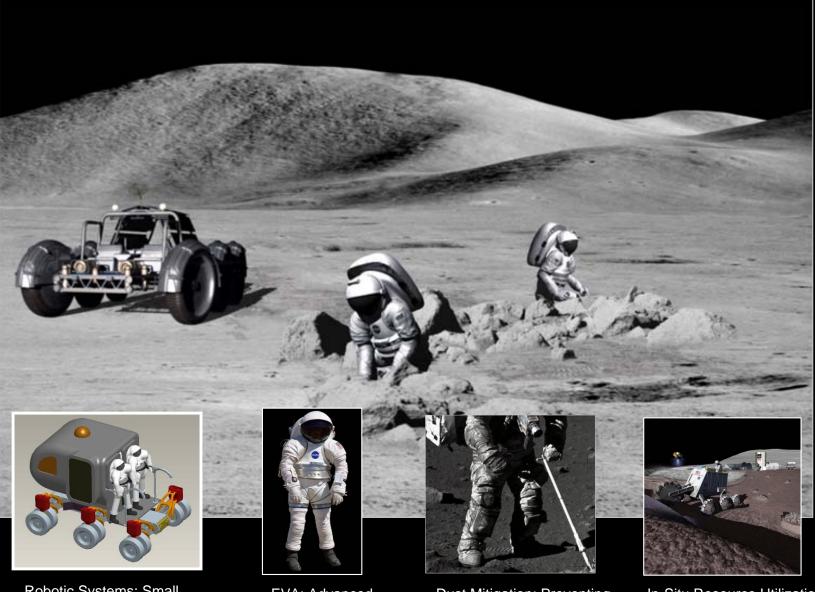
Integrated Systems Health Monitoring: Developing health monitoring system for Solid Rocket Motor.

Technology Development for Altair Lunar Lander

Propulsion & Cryogenics: Prototype LOX-Methane engine for ascent stage

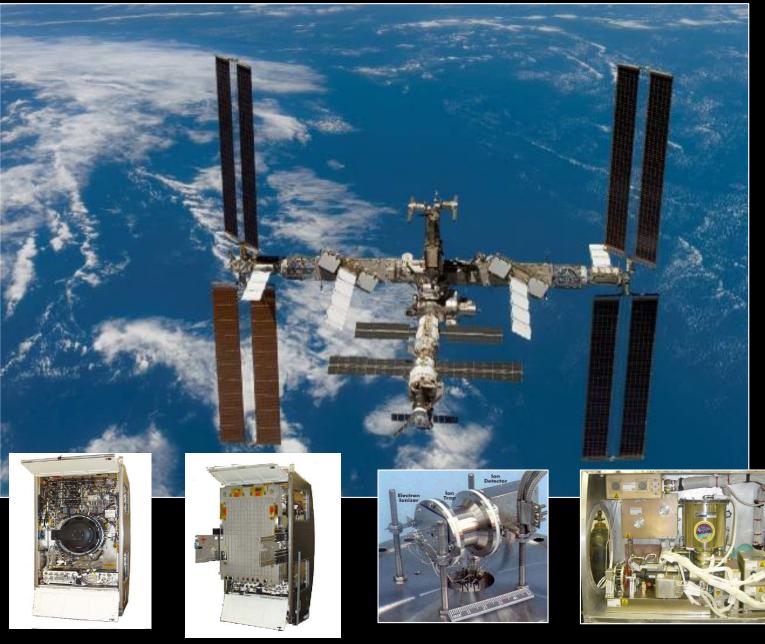
Propulsion & Cryogenics: Prototype deep throttling RL-10 engine for descent stage

avoidance.


Propulsion & Cryogenics: Zero boil off cryogenic propellant storage to enable long duration missions

Technology Development for the Lunar Outpost

Structures & Materials: Inflatable habitats to reduce launch volume Life Support: Closedloop life support systems to reduce consumables Energy Storage: Regenerative fuel cells to store energy during the lunar night. Power: Affordable fission surface power systems


Technology Development for Lunar Surface Operations

Robotic Systems: Small pressurized rover for sorties 200 km beyond the lunar outpost

EVA: Advanced surface suit with enhanced mobility and duration Dust Mitigation: Preventing dust accumulation and degradation of surface systems In-Situ Resource Utilization: Producing oxygen, water, and propellants from lunar resources

Technology Development for ISS

Combustion Integrated Rack Fluids Integrated Rack

Vehicle Cabin Air Monitor

Smoke Aerosol Measurement Experiment

Exploration Technology Development Program (ETDP)											
and Exploration Systems Mission Directorate (ESMD) Milestones											
Constellation Program Milestones	2007	2008	2009	2010	2011	2012	2013				
Program Reviews	🖗 SRR		PDR		CDR		Orion				
 Orion Crew Exploration Vehicle 	🖗 SRR	PE	DR 🖗 CE	DR			1 🖗				
Ares I Launch Vehicle	SRR		PDR 🖗 Are	s 1-X 🖗 CD	R	🖗 Ar	es 1-Y				
Lunar Lander						P SR					
• EVA	P SI	RR	P PDR		P		R				
ETDP Reviews	(ji)	IA 🖗 PS	P PS	🖗 IA	₽ Р §	PS	🖗 IA				
ETDP Project Milestones	(NR	C)	R		R	R :					
 Structures, Materials, & Mechanisms 				▽ Structu concepts	1						
Protection Systems		¦		lunar hab	itats						
Non-Toxic Propulsion		shield fo	or Orion	abla Zero boil propellant s	-		propulsion Lunar Lander				
 Energy Storage & Power Systems 		o Lithium-ion for EVA suit		abla Prototype regen fuel c							
Thermal Control	Dattery	v v suit √ Radiato for Orion	r	regentidere							
 Avionics & Software 						1	landing & dance system				
Env. Control & Life Support		¦ ∵ Prototy & moisture		eliver e & VCAM		for Lunar La	,				
 Crew Support & Accommodations 		system for		ght to ISS			anced EVA				
 ISS Research & Operations 			light to ISS	FIR		surfac	esuit				
 In-Situ Resource Utilization (ISRU) 		▽ Dem		ISS							
 Robotics, Ops, & Supportability 			on from regolith ad handling cra		lunar surface						
Fission Surface Power Systems				mobility s	systems		40 kW FSPS ctor simulator				

ESMD Strategic Objectives for Participating in Lunar Precursor Missions of Opportunity

- Primary Objectives (Landing, Communications, & Environments)
 - Provide descent imaging to validate terrain relative navigation algorithms, to characterize plume effects, and to aid in the development of landing simulations for crew training.
 - Demonstrate an autonomous precision landing and hazard avoidance system that will reduce risk for future cargo landers needed to construct the lunar outpost.
 - Demonstrate advanced communications technologies for relay of data from lunar orbit to Earth, or for communications between assets on the lunar surface.
 - Characterize the lunar dust, lighting, temperature, charging, micrometeoroid, and radiation environments to prepare for human missions.
 - Validate LRO orbital data with ground truth, and conduct topographical surveys of potential sites for the lunar outpost.
- Secondary Objectives (Materials & Components, Potential for ISRU)
 - Determine the effects of the lunar surface environment on the properties of various materials needed for the design of future systems.
 - Validate low-temperature batteries, rad hard electronics, and mechanisms to enable sustained operations in the lunar polar regions.
 - Verify the presence of hydrogen and other volatiles in the lunar polar regions for In-Situ Resource Utilization.

Other Objectives (Prototype Systems)

- Demonstrate prototype lunar surface mobility and regolith excavation systems.
- Demonstrate solar and radioisotope power systems for long-duration missions.
- Demonstrate the ability to store cryogens for long periods on the lunar surface to enable cryogenic ascent stage propulsion systems.
- Demonstrate or emplace navigation beacons to guide future precision landings.
- Demonstrate the production of oxygen from lunar regolith.